19 research outputs found

    The Local Chromatic Number

    Get PDF
    A graph vertex colouring is called k-local if the number of colours used in the closed neighbourhood of each vertex is at most k. The local chromatic number of a graph is the smallest k for which the graph has a proper k-local colouring. So unlike the chromatic number which is the minimum total number of colours required in a proper colouring, the local chromatic number is minimum number of colours that must appear in the closed neighbourhood of some vertex in a proper colouring. In this thesis we will examine basic properties of the local chromatic number, and techniques used to determine or bound it. We will examine a theory that was sparked by Lovász's original proof of the Kneser conjecture, using topological tools to give lower bounds on the chromatic number, and see how it is applicable to give lower bounds on the local chromatic number as well. The local chromatic number lies between the fractional chromatic number and the chromatic number, and thus it is particularly interesting to study when the gap between these two parameters is large. We will examine the local chromatic number for specific classes of graphs, and give a slight generalization of a result by Simonyi and Tardos that gives an upper bound on the local chromatic number for a class of graphs called Schrijver graphs. Finally we will discuss open conjectures about the chromatic number and investigate versions adapted to the local chromatic number

    IST Austria Thesis

    Get PDF
    In this thesis we study persistence of multi-covers of Euclidean balls and the geometric structures underlying their computation, in particular Delaunay mosaics and Voronoi tessellations. The k-fold cover for some discrete input point set consists of the space where at least k balls of radius r around the input points overlap. Persistence is a notion that captures, in some sense, the topology of the shape underlying the input. While persistence is usually computed for the union of balls, the k-fold cover is of interest as it captures local density, and thus might approximate the shape of the input better if the input data is noisy. To compute persistence of these k-fold covers, we need a discretization that is provided by higher-order Delaunay mosaics. We present and implement a simple and efficient algorithm for the computation of higher-order Delaunay mosaics, and use it to give experimental results for their combinatorial properties. The algorithm makes use of a new geometric structure, the rhomboid tiling. It contains the higher-order Delaunay mosaics as slices, and by introducing a filtration function on the tiling, we also obtain higher-order α-shapes as slices. These allow us to compute persistence of the multi-covers for varying radius r; the computation for varying k is less straight-foward and involves the rhomboid tiling directly. We apply our algorithms to experimental sphere packings to shed light on their structural properties. Finally, inspired by periodic structures in packings and materials, we propose and implement an algorithm for periodic Delaunay triangulations to be integrated into the Computational Geometry Algorithms Library (CGAL), and discuss the implications on persistence for periodic data sets

    Generalizing CGAL Periodic Delaunay Triangulations

    Get PDF
    Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets with translational periodicity, a software that computes such triangulations in the general case is not yet available, to the best of our knowledge. Combining and generalizing previous work, we present a practical algorithm for computing such triangulations. The algorithm has been implemented and experiments show that its performance is as good as the one of the CGAL package, which is restricted to cubic periodicity

    Pushdown reachability with constant treewidth

    Get PDF
    We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs

    LIPIcs

    Get PDF
    Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers

    A step in the Delaunay mosaic of order k

    Get PDF
    Given a locally finite set ⊆ℝ and an integer ≥0, we consider the function :Del()→ℝ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space

    Computing the Multicover Bifiltration

    Full text link
    Given a finite set A⊂RdA\subset\mathbb{R}^d, let Covr,k_{r,k} denote the set of all points within distance rr to at least kk points of AA. Allowing rr and kk to vary, we obtain a 2-parameter family of spaces that grow larger when rr increases or kk decreases, called the \emph{multicover bifiltration}. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a \v Cech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness.Comment: 25 pages, 8 figures, 4 tables. Extended version of a paper accepted to the 2021 Symposium on Computational Geometr

    LIPIcs

    Get PDF
    Given a finite set A ⊂ ℝ^d, let Cov_{r,k} denote the set of all points within distance r to at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of spaces that grow larger when r increases or k decreases, called the multicover bifiltration. Motivated by the problem of computing the homology of this bifiltration, we introduce two closely related combinatorial bifiltrations, one polyhedral and the other simplicial, which are both topologically equivalent to the multicover bifiltration and far smaller than a Čech-based model considered in prior work of Sheehy. Our polyhedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang, and can be efficiently computed using a variant of an algorithm given by these authors as well. Using an implementation for dimension 2 and 3, we provide experimental results. Our simplicial construction is useful for understanding the polyhedral construction and proving its correctness
    corecore